Abstract

Objective: A 2-year cluster randomized trial of Mouth Care Without a Battle (MCWB) was conducted in nursing homes (NHs) to determine if recommended mouth care practices provided by NH staff could improve residents’ oral hygiene and denture outcomes.

Design: Cluster randomized trial of NHs.

Setting and Participants: Seven MCWB NHs and 6 control NHs. A total of 219 NH residents completed baseline and 24-month oral examinations and, if applicable, denture assessments (control = 98, intervention = 121).

Intervention: The intervention consisted of training NH staff in the MCWB protocol, and providing support in its use for 2 years.

Measures: Descriptive data from the Minimum Data Set and clinical oral health assessments: the Plaque Index for Long-Term Care (range 0–3), the Gingival Index for Long-Term Care (range 0–4), and the Denture Plaque Index (range 0–4), with lower scores indicating better oral health.

Results: There were no significant demographic or health differences between groups at baseline. Residents’ mean age (standard deviation) was 77.8 years (13.5), 71% were female, and 49% had cognitive impairment. At 24 months, there were significant improvements in oral and denture hygiene in the intervention group compared with control (all \(P < .05 \)) with mean changes in indices that were 0.44 (Plaque Index for Long-Term Care), 0.55 (Gingival Index for Long-Term Care), and 0.67 (Denture Plaque Index) points lower in intervention NHs than control NHs.

Conclusions and Implications for Practice: Training NH staff to attend to residents’ oral hygiene and denture care had a sustained, favorable impact on residents’ oral and denture hygiene after 24 months compared with usual care. The protocol, MCWB, can be used by direct caregivers to improve the oral hygiene and denture care of NH residents.
including 37% with gingivitis and 26% with caries.6 Given that more than 1.4 million residents reside in US NHs,7 attending to their oral hygiene is important.

Four relevant systematic reviews assessed interventions to improve the oral health of older adult residents in NHs/long-term care settings8,9,10,11; a fifth review focused on older adults with cognitive impairment.11 All reviews noted the lack of high quality studies, insufficient description of interventions, and the heterogeneity of study designs, interventions, outcome measures, and follow-up. Most interventions were designed to improve caregiver or resident oral health knowledge, with interventions administered by different types of personnel and of different duration and intensity. Other interventions used behavioral change strategies for residents or caregivers.8,10 A few included provision of clinical dental hygiene services.9

In these systematic reviews, no specific intervention could be identified that was more effective than others, and higher quality studies were recommended. Interventions were likely to improve knowledge, but not necessarily oral health.

Our research team previously developed and pilot tested the Mouth Care Without a Battle (MCWB) program in NHs. This comprehensive, multicomponent program was developed to teach staff how to treat gingivitis, remove plaque, prevent tooth decay, provide denture care, meet behavioral challenges, and assess and monitor care.12 MCWB pilot test results, obtained in 3 NHs and 97 residents, found significant improvement in tooth brushing and reductions in dental plaque and gingivitis over 6 months.13 The favorable results from this small study of short duration warranted examination on a larger scale over a longer time period.

As part of a 2-year quality improvement effort and evaluation of MCWB, the oral hygiene status of NH residents was obtained in intervention and control NHs, either using or not using MCWB, respectively. The goals of this analysis were to assess baseline plaque, gingival and denture hygiene status, and changes in these parameters over 2 years in the 2 groups.

Methods

Data for this study were collected as part of a matched pairs cluster randomized trial examining change in oral hygiene and pneumonia incidence. Seven pairs (n = 14) of NHs were matched based on their size and pneumonia rate during the 6 months prior to the initiation of the intervention. One NH within each pair was then randomized to the intervention; in the remaining NHs, staff continued to provide standard mouth care.

Intervention

MCWB was developed by an interdisciplinary team of clinician scientists, and is described in detail elsewhere.12,14 Briefly stated, MCWB provides instruction highlighting that mouth care is healthcare (eg, relates to pneumonia incidence); techniques and products to clean and protect the teeth, tongue, gums, and dentures (eg, use of antimicrobial rinses); care provision in special situations (eg, when teeth are broken or loose); and providing care to people who are resistant (eg, singing, as a strategy to encourage residents to open their mouth). Additional details of MCWB are available at http://www.mouthcarewithoutabattle.org.12

The intervention included an in-service presentation of MCWB conducted by a dementia specialist/dental hygienist, and monthly visits over 2 years by that same person to provide input and guidance on mouth care techniques; at 12 months, a second in-service presentation was held. All nursing assistants, nurses, and an administrator were invited to the training, and all NH residents were expected to have mouth care provided by staff using skills learned from MCWB. In each NH, a nursing assistant “champion” was identified to be a dedicated oral care aide who was most involved in the monthly visits; this person provided support to the staff and tended to provide care to the residents who required the most time. Quality improvement techniques were used for monitoring and documentation activities, which included quarterly visits by investigators who shared reports of residents’ oral hygiene status.

Oral Hygiene Sample and Eligibility Criteria

Inclusion criteria for oral hygiene evaluation were being age 21 years and older, having natural teeth or using a denture, not requiring antibiotic prophylaxis before dental assessment, and not being in the NH for short-term rehabilitation. The sampling design of the MCWB trial consisted of repeated cross-sectional samples of up to 60 randomly selected eligible residents per NH at baseline and 24 months. The oral hygiene sample for data analysis described in this article consisted of the subset of residents referred to as a “cohort” who were randomly selected into both samples and who completed the baseline and follow-up oral hygiene exams. Written consent was obtained from participants or legally authorized representatives. All study procedures were approved by the Office of Human Research Ethics of the University of North Carolina at Chapel Hill.

Measures

The oral health examination consisted of 3 measures. Each NH was asked to provide a private space with access to a sink and a reclining chair or wheelchair. The study data were collected by a research dental hygienist.

Oral hygiene was assessed using two modified measures: the Plaque Index for Long-Term Care (PI-LTC) and the Gingival Index for Long-Term Care (GI-LTC). The PI-LTC is a modified version of the Debris Index of the Simplified Oral Hygiene Index15 scored from 0 (no plaque or stain) to 3 (soft plaque covering more than two-thirds of tooth surface). The GI-LTC is a modified version of the Gingival Index16 scored from 0 (no inflammation) to 4 (severe inflammation). For both the PI-LTC and GI-LTC, a score was assigned for the worst (ie, most plaque, most inflammation) buccal or lingual surface within each sextant. Scores were documented for both buccal and lingual surfaces across 3 maxillary and 3 mandibular sextants for a total of 12 possible PI-LTC and GI-LTC scores per resident. These individual scores were then used to create a mean summary score. Denture hygiene was assessed using the Denture Plaque Index (DPI).17 The DPI was obtained by immersing dentures in a disclosing solution for 30 seconds, rinsing off excess dye for 15 seconds, and assigning a score of 0 (“no plaque”) to 4 (“very heavy plaque covering >75% of the area”). Scores were assessed for each maxillary and mandibular facial and basal quadrant for a total of 16 possible DPI scores per resident which, in turn, were used to create a mean summary score. Residents with partial dentures were assessed using all 3 indices.

Additional resident-level and NH-level data were obtained to describe the sample and serve as potential covariates. Data on residents were abstracted from the Minimum Data Set (MDS) version 3.0, required for completion at admission, annually, and when a significant change in status occurs. The MDS data abstracted for this study were those most recent to baseline data collection. They included 21 characteristics shown in Table 1; missing data were present on 9 of these variables, but at a rate of 1.4% or less per variable. Data on NH-level characteristics included the Centers for Medicare & Medicaid Services Five-Star Quality Rating and others obtained from the administrator, shown in Table 2. There were no NH-level missing data.
Data Analysis

Improvement in oral hygiene would be demonstrated by statistically significant decreases in the 3 oral hygiene measures. First, to assess success of randomization, differences in baseline resident characteristics between study arms were assessed with two-tailed tests (ie, Wilcoxon rank-sum, Fisher exact). Second, unadjusted outcome analyses compared longitudinal changes in observed oral hygiene data, and complete MDS data: 98 and 121 in the control and intervention group, respectively. Of these 219, 186 (84.9%) had PI-LTC and GI-LTC data, 30.1% had DPI, and 14.6% had both.

Results

Study Enrollment and Retention

Sample sizes for participant enrollment, allocation, and follow-up are shown in Figure 1. In total, 952 eligible residents were invited to participate across all 14 sites at baseline (control = 418, intervention = 534); of these, 158 (16.6%) declined to participate, and 32 (3.4%) agreed but were not examined. Overall, 762 residents received baseline oral hygiene examinations. One intervention NH dropped out of the study at 1 year, so 24-month data are available for 13 homes. The analysis of change in oral hygiene is limited to the cohort of 219 residents (28.8%) with complete baseline and 24-month oral hygiene data, and complete MDS data: 98 and 121 in the control and intervention group, respectively. Of these 219, 186 (84.9%) had PI-LTC and GI-LTC data, 30.1% had DPI, and 14.6% had both.

Resident Baseline Characteristics

The 219 study residents’ mean age at baseline was 77.6 [standard deviation (SD) = 13.7] years, with 71.2% being female, 65.1% white, and...
29.4% African American (Table 1). Almost one-half (47.5%) had a diagnosis of Alzheimer’s disease or dementia. Over one-quarter (27.9%) required hands-on supervision during eating, necessitating either extensive or complete assistance from NH staff. Over one-quarter (27.9%) had a mechanically altered diet and almost one-half (45.7%) had a therapeutic diet. Residents in the intervention group more than two-thirds of the surface. A considerable proportion (40.8%) of residents had at least 1 tooth with a GI-LTC score of “3,” indicating at least 1 tooth with soft plaque covering more than two-thirds of the surface. A considerable proportion (40.8%) of residents had at least 1 tooth with a GI-LTC score of “3” or higher, indicating a tooth with moderate inflammation. One-half of residents had at least one DPI score of “3” or higher, indicating at least 1 denture surface quadrant with plaque covering 51%–75% of the surface.

NH Characteristics

Table 2 presents the characteristics of the 13 NHs. They were largely for-profit (76.5%), had on average 106 beds, and a mean overall quality rating of 3.6 (possible range 1–5, higher scores more favorable). NHs reported varying levels of mouth care and oral hygiene practices (data not shown); all but 1 (92.4%) reported that oral health services provided by a dentist were available to residents either inside or outside the NH, and all but 4 (69.3%) reported similar availability of services provided by a dental hygienist. The majority of NHs (69.3%;
After covariate adjustment. For PI-LTC, the intervention effect was significant for inclusion (Alzheimer’s disease adjusted for 3 resident-level characteristics that met the criteria for intervention homes compared with control homes). Having a diagnosis of Alzheimer’s or dementia was associated significantly with worsened PI-LTC scores (Δ = –.55; P = .01), being on a therapeutic diet was associated significantly with improved gingival health, and having an Alzheimer’s or dementia diagnosis approached a significant association with worsening gingival health (Δ = .15; P = .06). Finally, for DPI scores, the intervention effect was Δ = –.67 (P = .01), and having a diagnosis of chronic renal disease was significantly associated with improved hygiene (Δ = –.48; P = .02).

Discussion

The MCWB intervention was efficacious in improving oral and denture hygiene and reducing gingival inflammation over a 24-month period. For all 3 outcomes, participation in MCWB was associated with improvement when compared with the control group and after adjusting for NH variation, baseline scores, and differences in resident-level characteristics across study arms.

At baseline, maxillary teeth were somewhat cleaner and had less gingivitis than mandibular teeth. Thus, overall mean scores may not reflect poor conditions in some parts of the mouth. Importantly, only 18% (n = 4) of residents received “0” scores on their oral health measures, exhibiting no plaque or gingivitis and/or clean dentures. Many people had extensive areas of plaque, inflamed gums, and very poor dental hygiene, indicating mouth care neglect. The biggest improvements in the intervention group were for denture cleanliness, especially the mandibular dentures. The control group’s 24-month scores reflected oral conditions that did not change or worsened compared with baseline.

A large number of barriers to performing mouth care have been described, including a heavy staff workload, lack of time, inadequate knowledge and skills, lack of prioritization for this activity, need for clear oral health guidelines, and uncooperative residents. MCWB helps to overcome some of these barriers by including instruction on providing oral hygiene for NH residents, behavioral techniques, easy access to mouth care supplies, and an on-site oral health champion.

Some aspects of the longitudinal cohort in this study may influence the findings, such as that participants had to reside in the NH for at least 24 months. In 2015, the average length of stay in a US NH was 6 months (including residents admitted for rehabilitation, who were ineligible for participation), indicating these residents were markedly longer-stay than most. An advantage of this study was that among those participating at baseline, 28.7% were still living and participated 24 months later.

Table 3

<table>
<thead>
<tr>
<th>Hygiene Examination</th>
<th>Control Group (n = 7)</th>
<th>Intervention Group (n = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline M (SD)</td>
<td>24-Mo M (SD)</td>
</tr>
<tr>
<td>PI-LTC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.60 (.34)</td>
<td>1.67 (.33)</td>
</tr>
<tr>
<td>Maxillary</td>
<td>1.44 (.36)</td>
<td>1.49 (.28)</td>
</tr>
<tr>
<td>Mandibular</td>
<td>1.74 (.38)</td>
<td>1.81 (.35)</td>
</tr>
<tr>
<td>GI-LTC Care</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.42 (.38)</td>
<td>1.73 (.52)</td>
</tr>
<tr>
<td>Maxillary</td>
<td>1.28 (.46)</td>
<td>1.56 (.42)</td>
</tr>
<tr>
<td>Mandibular</td>
<td>1.56 (.40)</td>
<td>1.79 (.53)</td>
</tr>
<tr>
<td>DPI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2.69 (1.00)</td>
<td>2.29 (1.23)</td>
</tr>
<tr>
<td>Maxillary facial</td>
<td>2.60 (1.08)</td>
<td>2.29 (1.21)</td>
</tr>
<tr>
<td>Maxillary basal</td>
<td>2.83 (.93)</td>
<td>2.89 (1.02)</td>
</tr>
<tr>
<td>Mandibular facial</td>
<td>2.36 (1.06)</td>
<td>1.38 (1.13)</td>
</tr>
<tr>
<td>Mandibular basal</td>
<td>2.51 (.91)</td>
<td>2.19 (.91)</td>
</tr>
</tbody>
</table>

P values compare longitudinal changes in observed oral hygiene scores between arms using Wilcoxon rank-sum tests applied to NH-level mean 24-month change scores.

Table 4

<table>
<thead>
<tr>
<th>Parameters</th>
<th>PI-LTC</th>
<th>GI-LTC</th>
<th>DPI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N = 182</td>
<td>N = 181</td>
<td>N = 47</td>
</tr>
<tr>
<td>β (SE), P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>.68 (.18), <.001</td>
<td>.68 (.18), <.001</td>
<td>1.00 (.27), <.001</td>
</tr>
<tr>
<td>Baseline score</td>
<td>-.43 (.08), <.001</td>
<td>-.28 (.07), <.001</td>
<td>-.54 (.07), <.001</td>
</tr>
<tr>
<td>Intervention</td>
<td>-.44 (.18), .01</td>
<td>-.55 (.22), .01</td>
<td>-.67 (.26), .01</td>
</tr>
<tr>
<td>Chronic renal disease</td>
<td>-.14 (.23), .56</td>
<td>-.25 (.27), .35</td>
<td>-.48 (.20), .02</td>
</tr>
<tr>
<td>Alzheimer’s/dementia</td>
<td>.21 (.06), <.001</td>
<td>.15 (.08), .06</td>
<td>.10 (.22), .06</td>
</tr>
<tr>
<td>Therapeutic diet</td>
<td>-.05 (.13), .68</td>
<td>-.25 (.10), <.01</td>
<td>.32 (.18), .08</td>
</tr>
</tbody>
</table>

Random effects

Residual	.424	.568	.806
Intercept (NH)	.046	.095	<.001
Intraclass correlation	.098	.143	<.001

SE, standard error. Estimated with empirical sandwich SEs. Negative parameter estimates indicate improvement in oral health.
As noted by others, having Alzheimer’s disease or other dementias was significantly related to worse oral hygiene. Nevertheless, this study had favorable outcomes even with one-half of the study population having dementia, attesting to the ability of MCWB to improve oral hygiene among persons with dementia. Similarly, the intervention was effective considering that many participants had eating issues that may be detrimental to oral hygiene, and many were taking medications that can cause xerostomia, which increases the risk of gingival inflammation and dental caries.

It is not clear why renal disease was associated with improvement in the DPI. In hospitalized older adults, renal impairment is strongly associated with poor oral health. It can be manifested in the mouth by mucosal pathologies, making denture insertion and removal more difficult and less appealing for the caregiver. Also unclear is the inconsistent relationship of therapeutic diet to the DPI and gingival inflammation. Almost one-half of the residents were on a therapeutic diet (likely low-salt or low-sugar) to manage health conditions such as hypertension or diabetes. If diet is acting as a surrogate for control of diet (likely low-salt or low-sugar) to manage health conditions such as hypertension or diabetes, it could potentially explain reduced gingival inflammation; it is not clear why denture cleanliness somewhat worsened without knowing how diets may have changed during the study.

Limitations

As noted earlier, the analytic sample was not representative of the overall NH population. Because the study included repeat cross-sectional random samples of residents, the a priori goal was to compare population-averaged oral health from baseline to 24 months. The present analysis was conducted on a post hoc cohort defined after study completion. Second, because of a change in research personnel, the dental hygienist was not blinded to treatment condition for the second half of the study; therefore, it is possible that some bias may have been introduced into the 24-month evaluations. However, no study personnel knew which residents were or were not actually receiving mouth care, tempering this concern. Third, the number of teeth per sextant was not collected, and only the most affected tooth/sextant was scored; thus, the worst scores may overestimate what might have been obtained if all teeth were scored. Fourth, the number of residents (likely low-salt or low-sugar) to manage health conditions such as hypertension or diabetes. It can be manifested in the mouth by mucosal pathologies, making denture insertion and removal more difficult and less appealing for the caregiver. Also unclear is the inconsistent relationship of therapeutic diet to the DPI and gingival inflammation. Almost one-half of the residents were on a therapeutic diet (likely low-salt or low-sugar) to manage health conditions such as hypertension or diabetes. If diet is acting as a surrogate for control of diet (likely low-salt or low-sugar) to manage health conditions such as hypertension or diabetes, it could potentially explain reduced gingival inflammation; it is not clear why denture cleanliness somewhat worsened without knowing how diets may have changed during the study.

Conclusions/Relevance

The NH residents’ baseline status indicated a need for improved oral hygiene and denture cleanliness. The mouth care intervention was successful in reducing dental plaque, gingival inflammation, and denture cleanliness among the residents measured 2 years after program implementation. Thus, it is possible, and recommended, that NH staff better attend to the mouth care of their residents. MCWB is one such program to do so.

Acknowledgments

The authors thank the NHs and residents who participated in this project, and also Jennifer Hodgkinson, Christina Horsford, Soon Kwon and Alyson Miller who participated in data collection.

References